This study aims to quantify how turbulence in a channel flow mixes momentum in the mean sense. We applied the macroscopic forcing method (Mani & Park, Phys. Rev. Fluids, 2021, 054607) to direct numerical simulation (DNS) of a turbulent channel flow at $Re_\tau =180$ using two different forcing strategies that are designed to separately assess the anisotropy and non-locality of momentum mixing. In the first strategy, the leading term of the Kramers–Moyal expansion of the eddy viscosity is quantified, revealing all 81 tensorial coefficients that essentially characterise the local-limit eddy viscosity. The results indicate the following: (1) the eddy viscosity has significant anisotropy, (2) Reynolds stresses are generated by both the mean strain rate and mean rotation rate tensors associated with the momentum field and (3) the local-limit eddy viscosity generates asymmetric Reynolds stress tensors. In the second strategy, the eddy viscosity is quantified as an integration kernel revealing the non-local influence of the mean momentum gradient at each wall-normal coordinate on all nine components of the Reynolds stresses over the channel width. Our results indicate that while the shear component of the Reynolds stress is reasonably reproduced by the local mean gradients, other components of the Reynolds stress are highly non-local. These results provide an understanding of anisotropy and non-locality requirements for closure modelling of momentum transport in attached wall-bounded turbulent flows.
Read full abstract