Abstract
One of the most commonly used techniques in aerospace engineering is the RANS (Reynolds average Navier–Stokes) approach for calculating the transonic compressor flow field, where the accuracy of the computation is significantly affected by the turbulence model used. In this work, we use SA, SST, k-ɛ, and the PAFV turbulence model developed based on the side-biased mean fluctuations velocity and the mean strain rate tensor to numerically simulate the transonic compressor NASA Rotor 67 to evaluate the accuracy of turbulence modeling in numerical calculations of transonic compressors. The simulation results demonstrate that the four turbulence models are generally superior in the numerical computation of NASA Rotor 67, which essentially satisfies the requirements of the accuracy of engineering calculations; by comparing and analyzing the ability of the four turbulence models to predict the aerodynamic performance of transonic compressors and to capture the details of the flow inside the rotor. The errors of the Rotor 67 clogging flow rate calculated by the SA, SST, k-ɛ, and PAFV turbulence models with the experimental data are 0.9%, 0.8%, 0.7%, and 0.6%, respectively. The errors of the calculated peak efficiencies are 2.2%, 1.6%, 0.9%, and 4.9%. The SA and SST turbulence models were developed for the computational characteristics of the aerospace industry. Their computational stability is better and their outputs for Rotor 67 are comparable. The k-ɛ turbulence model calculates the pressure ratio and efficiency that are closest to the experimental data, but the computation of its details of the flow field near the wall surface is not ideal because the k-ɛ turbulence model cannot accurately capture the flow characteristics of the region of high shear stresses. The PAFV turbulence model has a better prediction of complex phenomena such as rotor internal shock wave location, shock–boundary layer interaction, etc., due to the use of a turbulent velocity scale in vector form, but the calculated rotor efficiency is small.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.