The parasite Toxoplasma gondii, or T. gondii, is zoonotic that both individuals as well as animals can contract resulting in toxoplasmosis, a life-threatening illness. We used an immunoinformatic technique in our research to construct a vaccine with multi-epitopes so that it can decrease the devastating impact caused by this dangerous parasite. In order to construct the vaccine, GRA6 and MIC3 proteins were targeted, which are engaged in T. gondii identification, infection, and immune response. Novel epitopes for linear B lymphocytes (LBL), cytotoxic T lymphocytes (CTL), and helper T lymphocytes (HTL) were found by epitope mapping, every anticipated epitope was assessed through rigorous screening to determine the top choices for epitopes which were entirely preserved, very antigenic in nature, nonallergenic, and nontoxic. 4 CTLs, 3 HTLs and 4 LBL epitopes were chosen and combined along with proper linkers and adjuvants to design a vaccine with several epitopes. Linkers as well as adjuvants were provided to make the vaccine more immunogenic, antigenic, and stable. The proposed vaccination was identified to possess the necessary biophysical properties, be soluble, extremely antigenic, and non-allergic. Reliability of the vaccine design was demonstrated by secondary along with tertiary structure prediction. It was anticipated that the vaccine's three-dimensional structure would likely link up with TLR-2 and TLR-4 via the investigation of molecular docking. TLR-2 and TLR-4 are crucial for the parasite's invasion and the body's response. In our docking investigation, both TLRs demonstrated strong binding affinities utilizing the vaccine structure. After that, the vaccine construct's elevated expression rate, which was observed in Escherichia coli strain K12, was confirmed by an investigation using in silico cloning and codon adaptation. The results of the research are really encouraging and some properties of the vaccine were found to be significantly better than existing the T. gondii multi-epitope vaccination based on the same proteins. Nonetheless, in vivo trials are strongly suggested for potential future studies.
Read full abstract