Abstract
In this study, a methodical workflow using subtractive proteomics, vaccine designing, molecular simulation, and agent-based modeling approaches were used to annotate the whole proteome of Burkholderia pseudomallei (strain K96243) for vaccine designing. Among the total 5717 proteins in the whole proteome, 505 were observed to be essential for the pathogen's survival and pathogenesis predicted by the Database of Essential Genes. Among these, 23 vaccine targets were identified, of which fimbrial assembly chaperone (Q63UH5), Outer membrane protein (Q63UH1), and Hemolysin-like protein (Q63UE4) were selected for the subsequent analysis based on the systematic approaches. Using immunoinformatic approaches CTL (cytotoxic T lymphocytes), HTL (helper T lymphocytes), IFN-positive, and B cell epitopes were predicted for these targets. A total of 9 CTL epitopes were added using the GSS linker, 6 HTL epitopes using the GPGPG linker, and 6 B cell epitopes using the KK linker. An adjuvant was added for enhanced antigenicity, an HIV-TAT peptide for improved delivery, and a PADRE sequence was added to form a 466 amino acids long vaccine construct. The construct was classified as non-allergenic, highly antigenic, and experimentally feasible. Molecular docking results validated the robust interaction of MEVC with immune receptors such as TLR2/4. Furthermore, molecular simulation revealed stable dynamics and compact nature of the complexes. The binding free energy results further validated the robust binding. In silico cloning, results revealed GC contents of 50.73 % and a CIA value of 0.978 which shows proper downstream processing. Immune simulation results reported that after the three injections of the vaccine a robust secondary immune response, improved antigen clearance, and effective immune memory generation were observed highlighting its potential for effective and sustained immunity. Future directions should encompass experimental validations, animal model studies, and clinical trials to substantiate the vaccine's efficacy, safety, and immunogenicity.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Biological Macromolecules
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.