The Yangtze River Basin experienced a once-in-a-century extreme drought in 2022 due to extreme weather, which had a serious impact on the local agricultural production and ecological environment. In order to investigate the spatial distribution and occurrence of the extreme drought events, this study used multi-source remote sensing data to monitor the extreme drought events in the Yangtze River Basin in 2022. In this study, the gravity satellite data product CSR_Mascon was used to calculate the GRACE Drought Intensity Index (GRACE-DSI), which was analyzed and compared with the commonly used meteorological drought indices, relative soil humidity, and soil water content data. The results show that (1) terrestrial water storage change data can well reflect the change in water storage in the Yangtze River Basin. Throughout the year, the average change in terrestrial water storage in the Yangtze River Basin from January to June is higher than the average value of 33.47 mm, and the average from July to December is lower than the average value of 48.17 mm; (2) the GRACE-DSI responded well to the intensity and spatial distribution of drought events in the Yangtze River Basin region in 2022. From the point of view of drought area, the Yangtze River Basin showed a trend of extreme drought increasing first, and then decreasing in the area of different levels of drought, and the range of drought reached a maximum in September with a drought area of 175.87 km2, which accounted for 97.71 per cent of the total area; at the same time, the area of extreme drought was the largest, with an area of 85.69 km2; (3) the spatial and temporal variations of the GRACE-DSI and commonly used meteorological drought indices were well correlated, with correlation coefficients above 0.750, among which the correlation coefficient of the SPEI-3 was higher at 0.937; (4) the soil moisture and soil relative humidity products from the CLDAS, combined with soil moisture products from the GLDAS, reflect the starting and ending times of extreme drought events in the Yangtze River Basin in 2022 well, using the information from the actual stations. In conclusion, gravity satellite data, analyzed in synergy with data from multiple sources, help decision makers to better understand and respond to drought.
Read full abstract