AbstractMost of the present production processes of SiC sintered bodies require some powder mixing using a mechanical milling process (ball milling, and so on). In this case, relatively long hours are required, and there is the problem of contamination during the preparation process. To avoid these problems, we developed a new process for obtaining a self‐sinterable, stoichiometric SiC powder, whose precursor material is water‐soluble; the precursor material was synthesized from aqueous silica and citric acid containing a small amount of aluminum compound. In order to obtain the stoichiometric SiC composition, the above aqueous precursor material was adequately cured in air (200°C‐400°C); subsequently carbonization reaction (~800°C) in nitrogen atmosphere, carbothermal reduction (~1600°C) in argon atmosphere, and pressureless sintering (~1900°C) were performed. Among these processes, the curing process (cross‐linking process) is very important for obtaining the equivalent composition (silica and carbon) for the subsequent carbothermal reduction. In this study, the adequate curing temperature and suitable preparation condition for the carbothermal reduction were investigated for the production of stoichiometric self‐sinterable SiC powder. The pressureless sintered body achieved using the obtained SiC powder demonstrated a desirable trans‐crystalline fracture behavior.
Read full abstract