This study aims to present a novel tri-generation plant consisting of a molten carbonate fuel cell (MCFC) unit coupled with a Stirling engine (SE), a heat recovery steam generator (HRSG), and two types of absorption refrigeration cycles (ARCs), i.e., Generator Absorber eXchanger (GAX) and Vapour Absorption Refrigeration (VAR). The proposed system is evaluated from energy, exergy, as well as environmental impact (3E) points of view. To carry out the parametric study, three sub-models are also introduced for the whole system. The sub-model (1) investigates the solo MCFC with the new configuration. In the sub-model (2), the SE and HRSG are added to boost the power generation and overall system efficiency through employing the heat wasted in the sub-model (1). In the last sub-model, for cooling purposes, the surplus heat of MCFC is reutilized using an absorption refrigeration cycle. Besides, to make a comparative study between GAX and VAR systems, the sub-model (3) is classified into two different schemes: (a) with a VAR cycle, and (b) with a GAX cycle. The results reveal that the exergy efficiency and CO2 emissions of the sub-models (1), (2), and (3) are 48.04%, 51.24%, 52.35% (VAR cycle), 52.12% (GAX cycle), 0.388 t/MWh, 0.364 t/MWh, 0.357 t/MWh (VAR cycle), and 0.358 t/MWh (GAX cycle), respectively. Either with GAX or VAR cycle, the proposed system indicates an acceptable standard of functionality in thermodynamic and environmental perspectives.