The risk for an unexpected fall can be due to increasing age, health conditions, and loss of cognitive, sensory, or musculoskeletal functions. Falls have personal and economic consequences in many countries. Different disturbances can occur during gait, such as tripping, slipping, or other unexpected circumstances that can generate a loss of balance. The strategies used to recover balance depend on many factors, but selecting a correct response strategy influences the success of balance recovery. (1) To collect and clarify the definitions of compensatory protective step strategies to recover balance in older adults; (2) to identify the most used methods to induce loss of balance; and (3) to identify the most used spatiotemporal variables in analyzing these actions. The present review has followed the PRISMA guideline extension for Scoping Review (PRISMA-ScR) and the phases proposed by Askery and O'Malley. The search was conducted in three databases: PubMed, Web of Science, and Scopus. A total of 525 articles were identified, and 53 studies were included. Forty-five articles were quasi-experimental studies, six articles were randomized controlled trials, and two studies had an observational design. In total, 12 compensatory protective step strategies have been identified. There are 12 compensatory protective step strategies: lowering and elevating strategy, short- and long-step strategy, backward and forward stepping for slip, single step, multiple steps, lateral sidesteps or loaded leg sidestep unloaded leg sidestep, crossover step (behind and front), and medial sidestep. To standardize the terminology applied in future studies, we recommend collecting these strategies under the term of compensatory protective step strategies. The most used methods to induce loss of balance are the tether-release, trip, waist-pull, and slip methods. The variables analyzed by articles are the number of steps, the acceleration phase and deceleration phase, COM displacement, the step initiation or step duration, stance phase time, swing phase time and double-stance duration, stride length, step length, speed step, speed gait and the type of step.