Organic matter (OM) recovery from sewage sludge is critical for sustainable development. Extracellular organic substances (EOS) are the main organic components of sludge, and the release of EOS from sludge is usually the rate-limiting step for OM recovery. However, a poor understanding of the intrinsic characteristics of binding strength (BS) of EOS usually restricts the release of OM from sludge. To reveal the underlying mechanism that how the intrinsic characteristics of EOS limit its release, in this study, the BS of EOS in sludge was quantitatively characterised by 10 rounds of energy input (Ein) with the same magnitude per round; the corresponding changes in the main components, floc structures and rheological properties of sludge after different numbers of Ein were also explored. Results showed that relationships between the release of EOS and the main multivalent metals, median diameters, fractal dimensions, elastic modulus and viscous modulus in the linear viscoelastic region of sludge versus the number of Ein, highlighted that the power-law distribution of BS in EOS was responsible for the occurrence state of organic molecules, stability of floc structures and maintenance of rheological properties. The result of hierarchical cluster analysis (HCA) further revealed three BS levels of the EOS in sludge, indicating that the release or recovery of OM from sludge occurred in three stages. To the best of our knowledge, this is the first study that explores the release profiles of EOS in sludge by repeated Ein for assessing the BS. Our findings may provide an important theoretical basis for the development target methods about the release and recovery of OM from sludge.
Read full abstract