Non-small cell lung cancer (NSCLC) is a leading cause of cancer-related death globally. LEM domain containing 1 (LEMD1) function has been identified in several cancers but not in NSCLC. This study aimed to investigate the LEMD1 function in NSCLC. NSCLC tissues were obtained from 66 patients, and LEMD1 expressions were measured using quantitative real-time PCR, immunohistochemical assay, and Western blot. Overall survival of NSCLC patients was estimated by the Kaplan-Meier method. Meanwhile, LEMD1 function and mechanism were assessed using Cell Counting Kit-8, 5-Ethynyl-2'-deoxyuridine analysis, Transwell, Sphere formation assay, and flow cytometry. Furthermore, LEMD1 function in vivo was evaluated by establishing a xenograft tumor model, hematoxylin-eosin staining, and immunohistochemical assay. LEMD1 was highly expressed in NSCLC tissues and was interrelated to tumor differentiation, TNM stage, and lymph node metastasis of patients. Overall survival of NSCLC patients with high LEMD1 was found to be lower than that of patients with low LEMD1. Functionally, interference with LEMD1 restrained NSCLC cell proliferation, invasion, and stemness characteristics. Mechanistically, LEMD1 facilitated the malignant phenotype of NSCLC, and 740 Y-P reversed this impact, prompting that LEMD1 aggravated NSCLC by activating PI3K/AKT pathway. Furthermore, LEMD1 knockdown hindered NSCLC proliferation in vivo. Conclusion: LEMD1 accelerated NSCLC cell proliferation, invasion, and stemness characteristics via activating PI3K/AKT pathway.
Read full abstract