Abstract Given an arbitrary graph E we investigate the relationship between E and the groupoid G E {G_{E}} . We show that there is a lattice isomorphism between the lattice of pairs ( H , S ) {(H,S)} , where H is a hereditary and saturated set of vertices and S is a set of breaking vertices associated to H, onto the lattice of open invariant subsets of G E ( 0 ) {G_{E}^{(0)}} . We use this lattice isomorphism to characterise the decomposability of the Leavitt path algebra L K ( E ) {L_{K}(E)} , where K is a field. First we find a graph condition to characterise when an open invariant subset of G E ( 0 ) {G_{E}^{(0)}} is closed. Then we give both a graph condition and a groupoid condition each of which is equivalent to L K ( E ) {L_{K}(E)} being decomposable in the sense that it can be written as a direct sum of two nonzero ideals. We end by relating decomposability of a Leavitt path algebra with the existence of nontrivial central idempotents. In fact, all the nontrivial central idempotents can be described.
Read full abstract