As a temporary project, the supporting system of excavation often encounters issues such as the waste of support components, environmental pollution, and high carbon emissions. This article presents a foundation pit support technology that utilizes steel tube anchorage sheet piles, which can be assembled and fully recycled. The composition of the support system is also introduced. Furthermore, a large-scale model test of steel-pipe-anchored sheet piles was designed and implemented. The displacement of each component of system and stability during excavation were investigated using 3D finite element modeling and analysis. The study results indicate that the deformation and failure mode of the model foundation under the steel-pipe-anchored sheet pile support system are closely related to the distance between the pipe pile and the sheet pile. When the distance is 10 cm, both the pipe pile and the sheet pile tilt simultaneously. When the distance is approximately 30–50 cm, the sliding surface becomes exposed from the position of the pipe pile. At distances up to 100 cm, the sliding surface is exposed between the pipe pile and the sheet pile. The anchoring effect of pipe piles and tie rods can effectively reduce the horizontal displacement of the sheet pile itself. The horizontal displacement at the top of both the pipe pile and sheet pile remains consistent throughout the excavation period of this model foundation. During excavation, measured earth pressure on the sheet pile is less with theoretical active earth pressure. After excavation, the maximum horizontal displacement of the top of the pipe pile exhibits a hyperbolic relationship with excavation depth.