Deterioration and aging of the technical fleet of thermal power facilities lead to an unpredictable shutdowns of power equipment. Therefore, it is necessary to create a special approach in maintenance and repair programs, taking into account the possibility of predicting the moment of onset of the defect, its development, as well as the time of possible equipment failure. The equipment maintenance system used at the enterprises is based on the collection of retrospective data on defects and failures on the main and auxiliary equipment of the TPP and summarizing statistics on identical or similar equipment samples. Analysis of domestic and foreign methods of maintenance and organization of repair, as well as possibility of their application in modern power engineering is given. In order to create an efficient production asset management system, which addresses the problem of finding a balance between the potential risk of losses associated with both the operation of equipment and the cost of correcting defects, new class systems are now used in the software market, which carry out equipment maintenance based on the forecast. In order to optimize the equipment maintenance system and ensure uninterrupted and reliable operation of the equipment at minimum operating costs, as well as to reduce equipment downtime, unscheduled and emergency operations, it is advisable to use a modern approach to manage both reliability and risk, as well as the cost of asset ownership. This will enable to control the economic efficiency of the use of production assets. The necessity of creation of an algorithm of implementation of repair programs of power equipment base on technical condition for its use in digital power systems is shown. An algorithm is proposed for implementing the repair program of power units of electric power plants, including steam boilers and turbines of thermal power plants, differing by taking into account the technical condition of power equipment, which allows recognizing the defect that has appeared, determining the cause of its occurrence, its evolution and the duration of possible equipment failure. In the developed repair maintenance algorithm, it is proposed to make a transition from statistical empirical assessments of the technical condition of the equipment to objective estimates obtained on the basis of automated technical diagnostics systems and predictive analysis of situations.
Read full abstract