In this paper, we study the steady-state problem of an S-K-T competition model with a spatially degenerate intraspecific competition coefficient. First, the global bifurcation continuum of positive steady-state solutions from its semitrivial steady-state solution is given, which depends on the spatial heterogeneity and cross-diffusion. Second, two limiting systems are derived as the cross-diffusion coefficient tends to infinity. Moreover, we demonstrate the existence of positive steady-state solutions near the two limiting systems, and show which one of the limiting systems characterizes the positive steady-state solution.