For ternary polymer-salt-water systems at low polymer concentration (0.5%, w/w), we have experimentally investigated the effect of polymer size on polymer diffusiophoresis (i.e., polymer migration induced by a salt concentration gradient) and salt osmotic diffusion (i.e., salt migration induced by a polymer concentration gradient). Specifically, Rayleigh interferometry was employed to measure ternary diffusion coefficients for aqueous solutions of poly(ethylene glycol) (PEG) and KCl at 25 °C. Our investigation focused on four polymer molecular masses (from 10 to 100 kg mol(-1)) and two salt concentrations (0.25 and 0.50 M). To describe and examine our experimental results, we introduced a normalized diffusiophoresis coefficient as the ratio of polymer diffusiophoresis to polymer Brownian mobility. This coefficient was found to increase with polymer molecular mass, thereby demonstrating that the relative importance of polymer diffusiophoresis compared to its intrinsic Brownian mobility increases with particle size. The observed behavior was linked to preferential hydration (water thermodynamic excess) and hydration (bound water) of the macromolecule. The ratio of salt osmotic diffusion to binary salt-water diffusion approximately describes the nonuniform spatial distribution of salt along a static polymer concentration gradient at equilibrium. The significance of polymer diffusiophoresis, especially at high PEG molecular mass, was examined by considering a steady-state diffusion problem showing that salt concentration gradients can produce large enhancements and depletions of polymer concentration. This work is valuable for understanding and modeling the effect of salt concentration gradients on diffusion-based transport of polymers with applications to interfacial processes.
Read full abstract