Abstract

We study multigrid for solving the stochastic steady-state diffusion problem. We operate under the mild assumption that the diffusion coefficient takes the form of a finite Karhunen-Loeve expansion. The problem is discretized using a finite-element methodology using the polynomial chaos method to discretize the stochastic part of the problem. We apply a multigrid algorithm to the stochastic problem in which the spatial discretization is varied from grid to grid while the stochastic discretization is held constant. We then show, theoretically and experimentally, that the convergence rate is independent of the spatial discretization, as in the deterministic case, and the stochastic discretization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.