A smart city is a city equipped with many sensors communicating with each other for different purposes. Cybersecurity and signal security are important in such cities, especially for airports and harbours. Any signal interference or attack on the navigation of autonomous vehicles and aircraft may lead to catastrophes and risks in people's lives. Therefore, it is of tremendous importance to develop wireless security networks for the localisation of any radio frequency interferer in smart cities. Time of arrival, angle of arrival, time-difference of arrivals, received signal strength and received signal strength difference (RSSD) are known observables used for the localisation of a signal interferer. Localisation means to estimate the coordinates of an interferer from some established monitoring stations and sensors receiving such measurements from an interferer. The main goal of this study is to optimise the geometric configuration of the monitoring stations using a desired dilution of precision and/or variance-covariance matrix (VCM) for the transmitter's location based on the RSSD. The required mathematical models are developed and applied to the Arlanda international airport of Sweden. Our numerical tests show that the same configuration is achieved based on dilution of precision and VCM criteria when the resolution of design is lower than 20 m in the presence of the same constraints. The choice of the pathloss exponent in the mathematical models of the RSSDs is not important for such low resolutions. Finally, optimisation based on the VCM is recommended because of its larger redundancy and flexibility in selecting different desired variances and covariances for the coordinates of the transmitter.