Abstract
Seismic travel time tomography using surface waves is an effective tool for three-dimensional crustal imaging. Historically, these surface waves are the result of active seismic sources or earthquakes. More recently, however, surface waves retrieved through the application of seismic interferometry have also been exploited. Conventionally, two-step inversion algorithms are employed to solve the tomographic inverse problem. That is, a first inversion results in frequency-dependent, two-dimensional maps of phase velocity, which then serve as input for a series of independent, one-dimensional frequency-to-depth inversions. As such, a set of localized depth-dependent velocity profiles are obtained at the surface points. Stitching these separate profiles together subsequently yields a three-dimensional velocity model. Relatively recently, a one-step three-dimensional non-linear tomographic algorithm has been proposed. The algorithm is rooted in a Bayesian framework using Markov chains with reversible jumps, and is referred to as transdimensional tomography. Specifically, the three-dimensional velocity field is parameterized by means of a polyhedral Voronoi tessellation. In this study, we investigate the potential of this algorithm for the purpose of recovering the three-dimensional surface-wave-velocity structure from ambient noise recorded on and around the Reykjanes Peninsula, southwest Iceland. To that end, we design a number of synthetic tests that take into account the station configuration of the Reykjanes seismic network. We find that the algorithm is able to recover the 3D velocity structure at various scales in areas where station density is high. In addition, we find that the standard deviation of the recovered velocities is low in those regions. At the same time, the velocity structure is less well recovered in parts of the peninsula sampled by fewer stations. This implies that the algorithm successfully adapts model resolution to the density of rays. It also adapts model resolution to the amount of noise in the travel times. Because the algorithm is computationally demanding, we modify the algorithm such that computational costs are reduced while sufficiently preserving non-linearity. We conclude that the algorithm can now be applied adequately to travel times extracted from station–station cross correlations by the Reykjanes seismic network.
Highlights
The Reykjanes high temperature geothermal system is located at the tip of the Reykjanes peninsula, southwest Iceland
We investigate the potential of the one-step 3D probabilistic inversion method [24,25] to recover the 3D velocity structure beneath the Reykjanes peninsula, southwest Iceland
We investigated the ability of 3D transdimensional Markov chain Monte Carlo to recover the 3D surface wave velocity structure of the Reykjanes peninsula
Summary
The Reykjanes high temperature geothermal system is located at the tip of the Reykjanes peninsula, southwest Iceland. Ref. Martins et al [3] uses a two-step linearized tomographic inversion method to recover the 3D surface wave velocity of the Reykjanes Peninsula. Similar to the aforementioned study by Martins et al [3], Young et al [18] and Galetti et al [23] use a two-step scheme to recover the 3D surface wave velocity structure In the latter studies, the frequency-dependent 2D maps of phase velocity are obtained using a 2D transdimensional approach. We investigate the potential of the one-step 3D probabilistic inversion method [24,25] to recover the 3D velocity structure beneath the Reykjanes peninsula, southwest Iceland. To investigate the potential of this one-step 3D transdimensional method, we generate synthetic frequency-dependent travel times between the station locations of the RARR. The effect of (the computational) grid size on forward modeling errors and how to choose an appropriate size are discussed
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have