A suitable constitutive model for describing the mechanical behaviors of ultra-high performance concrete (UHPC) under various loading histories plays a vital role in analyzing its structural performance. In this work, a consistent elastoplastic damage model is developed for UHPC containing coarse aggregate (UHPC-CA) subjected to static and fatigue loads, in which the driving and alleviating effects induced by the inclusions of coarse aggregate and steel fiber are considered. For damage evolution, based on the acting mechanism of the non-uniformity of stress wave propagation determined by the loading rate on the mechanical responses of UHPC-CA, the loading rate is skillfully integrated into the damage evolution rule to achieve the consistent description of mechanical behaviors of UHPC-CA under static and fatigue loading conditions. Regarding plasticity growth, an empirical plastic deformation model is adopted to improve the computational efficiency of structural nonlinear analysis. To verify the applicability of the proposed model, a user-defined UMAT subroutine is further developed for the subsequent numerical implementation. The comprehensive comparisons between the numerical predictions and independent experimental results at both the material level and structural level solidly demonstrate the capacity of the consistent model to capture the main features concerning the mechanical performance of UHPC-CA subjected to different loading paths.
Read full abstract