Abstract

A prosthetic knee is designed to replace the functionality of an anatomical knee in transfemoral amputees. The purpose of a prosthetic knee is to restore mobility and compensate amputees for their impairment. In the present research numerical modelling and simulation of a carbon fabric reinforced polymer made polycentric prosthetic knee with four-bar mechanism was performed. Virtual prototyping with computer-aided design and computer-aided engineering software ensured geometric and structural stability of the knee design. The linkage mechanism, instantaneous centre's location and trajectory were investigated using multibody dynamics and analytical formulations. Computational simulations with a non-linear finite element model were employed with joints, contact formulations and an orthotropic material model to predict the displacement, stress formulated and life of the knee prosthesis under static and cyclic loading conditions. Finite element analysis assessed the strength and durability of knee in accordance to standards. Maximum Principal stress of 155 MPa and life expectancy of 3.1 × 106 cycles were determined for the composite knee through numerical simulations ensuring a safe design. Experimental testing was also conducted as per standards and the percentage error was estimated to be 2.52%, thereby establishing the validity of the finite element model deployed. This type of simulation-based approach can be implemented to efficiently and affordably design and prototype a prosthetic knee with desired functioning criteria.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call