In this study, the forced vibration of a curved pipe conveying fluid resting on a nonlinear elastic foundation is considered. The governing equations for the pipe system are formed with the consideration of viscoelastic material, nonlinearity of foundation, external excitation, and extensibility of centre line. Equations governing the in-plane vibration are solved first by the Galerkin method to obtain the static in-plane equilibrium configuration. The out-of-plane vibration is simplified into a constant coefficient gyroscopic system. Subsequently, the method of multiple scales (MMS) is developed to investigate external first and second primary resonances of the out-of-plane vibration in the presence of three-to-one internal resonance between the first two modes. Modulation equations are formed to obtain the steady state solutions. A parametric study is carried out for the first primary resonance. The effects of damping, nonlinear stiffness of the foundation, internal resonance detuning parameter, and the magnitude of the external excitation are investigated through frequency response curves and force response curves. The characteristics of the single mode response and the relationship between single and two mode steady state solutions are revealed for the second primary resonance. The stability analysis is carried out for these plots. Finally, the approximately analytical results are confirmed by the numerical integrations.
Read full abstract