Vehicle running state parameters and road surface state are crucial to the stability of four-wheel independent drive and steering electric vehicle control. Therefore, this study explores the estimation of vehicle driving state parameters and road surface adhesion coefficients using a combination of federal Kalman filtering and an intelligent bionic antlion optimization algorithm. Firstly, according to the research purpose of the paper and the focus on the accuracy of the establishment of the three degrees of freedom dynamics model, fully considering the road conditions, the paper adopts the Dugoff tire model and finally completes the establishment of the vehicle state estimation model. Secondly, the drive state estimation algorithm is developed utilizing the principles of federal Kalman filtering and volume Kalman filtering. At the same time, robust estimation theory is introduced into the sub-filter, and the antlion optimization module is designed at the lower layer of the main filter to enhance the accuracy of estimates. It is easy to see that the design of the Antlion federal Kalman travel state estimation algorithm has noticeably enhanced accuracy and traceability, according to the result. Thirdly, a joint estimation algorithm of state estimation and road surface adhesion coefficient has been devised to enhance the stability and precision of the estimation process. Finally, the results showed that the joint estimation algorithm has high accuracy in estimating vehicle driving state parameters such as the center of mass lateral deflection angle and road surface adhesion coefficient by simulation.