Temperature fluctuations challenge ectothermic species, particularly tropical fish dependent on external temperatures for physiological regulation. However, the molecular mechanisms through which low-temperature stress impacts immune responses in these species, especially in relation to chromatin accessibility and epigenetic regulation, remain poorly understood. In this study, we investigate chromatin and transcriptional changes in the head kidney and thymus tissues of Nile tilapia (Oreochromis niloticus), a tropical fish of significant economic importance, under cold stress. By analyzing cis-regulatory elements in open chromatin regions and their associated transcription factors (TFs), we construct a comprehensive transcriptional regulatory network (TRN) governing immune responses, including DNA damage-induced apoptosis. Our analysis identifies 119 TFs within the TRN, with Stat1 emerging as a central hub exhibiting distinct binding dynamics under cold stress, as revealed by footprint analysis. Overexpression of Stat1 in immune cells leads to apoptosis and increases the expression of apoptosis-related genes, many of which contain Stat1 binding sites in their regulatory regions, emphasizing its critical role in immune cell survival during cold stress. These results provide insights into the transcriptional and epigenetic regulation of immune responses to cold stress in tilapia and highlight Stat1 as a promising target for enhancing cold tolerance in tropical fish species.
Read full abstract