Abstract

In mammals, type II interferon (IFN; i.e. IFN-γ) signalling transduces through its specific receptors IFN-γR1 and IFN-γR2. In an osteoglossiform fish, the arapaima Arapaima gigas, three type II IFNs, IFN-γ-like, IFN-γ and IFN-γrel, and their four possible receptor subunits IFN-γR1-1, IFN-γR1-2, IFN-γR2-1 and IFN-γR2-2 were identified in this study. The three type II IFN genes are composed of four exons and three introns, and they all contain IFN-γ signature motif and signal peptide, with the presence of potential nuclear localization signal (NLS) in IFN-γ-like and IFN-γ. The IFN-γR1-1, IFN-γR1-2, IFN-γR2-1 and IFN-γR2-2 are composed of seven exons and six introns, with predicted IFN-γR1-1 and IFN-γR1-2 proteins containing JAK1 and STAT1 binding sites, and IFN-γR2-1 and IFN-γR2-2 containing JAK2 binding sites. Gene synteny analysis showed that the type II IFN and their receptor loci are duplicated in arapaima. All these genes were expressed constitutively in all organs/tissues examined, and responded to the stimulation of polyI:C. The prokaryotic recombinant IFN-γ-like, IFN-γ and IFN-γrel proteins can significantly induce the upregulation of immune-related genes in trunk kidney leucocytes. The ligand-receptor relationship analyses revealed that recombinant IFN-γ-like, IFN-γ, and IFN-γrel transduce downstream signalling through IFN-γR1-1/IFN-γR2-1, IFN-γR1-2/IFN-γR2-2, and IFN-γR1-1, respectively, in xenogeneic cells with the overexpression of original or chimeric receptors. In addition, tyrosine (Y) 366 and Y377 in the intracellular region may be essential for the function of IFN-γR1-2 and IFN-γR1-1, respectively. The finding of type II IFN system in A. gigas thus provides different knowledge in understanding the diversity and evolution of type II IFN ligand-receptor relationships in vertebrates.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call