Background: Retinal blood vessel segmentation plays an important role in diagnosing retinal diseases such as diabetic retinopathy, glaucoma, and hypertensive retinopathy. Accurate segmentation of blood vessels in retinal images presents a challenging task due to noise, low contrast, and the complex morphology of blood vessel structures. Methods: In this study, we propose a novel ensemble learning framework combining four deep learning architectures: U-Net, ResNet50, U-Net with a ResNet50 backbone, and U-Net with a transformer block. Each architecture is customized to enhance feature extraction and segmentation performance. The models are trained on the DRIVE and STARE datasets to improve the degree of generalization and evaluated using the performance metric accuracy, F1-Score, sensitivity, specificity, and AUC. Results: The ensemble meta-model integrates predictions from these architectures using a stacking approach, achieving state-of-the-art performance with an accuracy of 0.9778, an AUC of 0.9912, and an F1-Score of 0.8231. These results demonstrate the performance of the proposed technique in identifying thin retinal blood vessels. Conclusions: A comparative analysis using qualitative and quantitative results with individual models highlights the robustness of the ensemble framework, especially under conditions of noise and poor visibility.
Read full abstract