Abstract
BackgroundThe retinal vasculature, a crucial component of the human body, mirrors various illnesses such as cardiovascular disease, glaucoma, and retinopathy. Accurate segmentation of retinal vessels in funduscopic images is essential for diagnosing and understanding these conditions. However, existing segmentation models often struggle with images from different sources, making accurate segmentation in crossing-source fundus images challenging. MethodsTo address the crossing-source segmentation issues, this paper proposes a novel Multi-level Adversarial Learning and Pseudo-label Denoising-based Self-training Framework (MLAL&PDSF). Expanding on our previously proposed Multiscale Context Gating with Breakpoint and Spatial Dual Attention Network (MCG&BSA-Net), MLAL&PDSF introduces a multi-level adversarial network that operates at both the feature and image layers to align distributions between the target and source domains. Additionally, it employs a distance comparison technique to refine pseudo-labels generated during the self-training process. By comparing the distance between the pseudo-labels and the network predictions, the framework identifies and corrects inaccuracies, thus enhancing the accuracy of the fine vessel segmentation. ResultsWe have conducted extensive validation and comparative experiments on the CHASEDB1, STARE, and HRF datasets to evaluate the efficacy of the MLAL&PDSF. The evaluation metrics included the area under the operating characteristic curve (AUC), sensitivity (SE), specificity (SP), accuracy (ACC), and balanced F-score (F1). The performance results from unsupervised domain adaptive segmentation are remarkable: for DRIVE to CHASEDB1, results are AUC: 0.9806, SE: 0.7400, SP: 0.9737, ACC: 0.9874, and F1: 0.8851; for DRIVE to STARE, results are AUC: 0.9827, SE: 0.7944, SP: 0.9651, ACC: 0.9826, and F1: 0.8326. ConclusionThese results demonstrate the effectiveness and robustness of MLAL&PDSF in achieving accurate segmentation results from crossing-domain retinal vessel datasets. The framework lays a solid foundation for further advancements in cross-domain segmentation and enhances the diagnosis and understanding of related diseases.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have