Tin dioxide (SnO2) is widely recognized as a high-performance anode material for lithium-ion batteries. To simultaneously achieve satisfactory electrochemical performances and lower manufacturing costs, engineering nano-sized SnO2 and further immobilizing SnO2 with supportive carbon frameworks via eco-friendly and cost-effective approaches are challenging tasks. In this work, biomass sodium lignosulfonate (LS-Na), stannous chloride (SnCl2) and a small amount of few-layered graphene oxide (GO) are employed as raw materials to engineer a hierarchical carbon framework supported SnO2 nanocomposite. The spontaneous chelation reaction between LS-Na and SnCl2 under mild hydrothermal condition generates the corresponding SnCl2@LS sample with a uniform distribution of Sn2+ in the LS domains, and the SnCl2@LS sample is further dispersed by GO sheets via a redox coprecipitation reaction. After a thermal treatment, the SnCl2@LS@GO sample is converted to the final SnO2/LSC/RGO sample with an improved microstructure. The SnO2/LSC/RGO nanocomposite exhibits excellent lithium-ion storage performances with a high specific capacity of 938.3 mAh/g after 600 cycles at 1000 mA g−1 in half-cells and 517.1 mAh/g after 50 cycles at 200 mA g−1 in full-cells. This work provides a potential strategy of engineering biomass derived high-performance electrode materials for rechargeable batteries.
Read full abstract