Mg(2+) is essential for the proper folding and function of RNA, though the effect of Mg(2+) concentration on the free energy, enthalpy, and entropy landscapes of RNA folding is unknown. This work exploits temperature-controlled single-molecule FRET methods to address the thermodynamics of RNA folding pathways by probing the intramolecular docking/undocking kinetics of the ubiquitous GAAA tetraloop-receptor tertiary interaction as a function of [Mg(2+)]. These measurements yield the barrier and standard state enthalpies, entropies, and free energies for an RNA tertiary transition, in particular, revealing the thermodynamic origin of [Mg(2+)]-facilitated folding. Surprisingly, these studies reveal that increasing [Mg(2+)] promotes tetraloop-receptor interaction by reducing the entropic barrier (-TΔS(++)(dock)) and the overall entropic penalty (-TΔS(+) (dock)) for docking, with essentially negligible effects on both the activation enthalpy (ΔH(++)(dock)) and overall exothermicity (ΔH(+)(dock)). These observations contrast with the conventional notion that increasing [Mg(2+)] facilitates folding by minimizing electrostatic repulsion of opposing RNA helices, which would incorrectly predict a decrease in ΔH(++)(dock)) and ΔH(+)(dock)) with [Mg(2+)]. Instead we propose that higher [Mg(2+)] can aid RNA folding by decreasing the entropic penalty of counterion uptake and by reducing disorder of the unfolded conformational ensemble.