Biuret assays for total protein measurement are considered to react with all peptides longer than 2 residues. Some studies using biuret assays of urine suggest that small peptides generally are more abundant than proteins in urine, but it is not clear whether this is a problem of assay specificity. We analyzed the specificity and kinetics of a biuret reaction for solutions of amino acids, organic compounds, peptides, proteins, and ultrafiltered urine specimens and compared the results with standard clinical assays for protein measurement. The biuret assay cross-reacted with several amino acids, dipeptides, and other organic compounds able to form 5- or 6-member ring chelation complexes with copper. Reactions with amino acids and dipeptides had higher absorbance maxima (blue color) than with larger peptides and proteins (purple). Compounds forming potential 4-, 7-, 8-, or 9-member ring complexes with copper had low reactivity. Amino acid amides, dipeptides, and longer peptides had substantial reactivity, except those containing proline. Proteins and polypeptides had similar biuret reactivities per peptide bond, but reaction kinetics were slower for proteins than peptides. Urine specimens ultrafiltered through 3-kDa-cutoff membranes had substantial biuret reactivity, but absorbance maxima were consistent with cross-reactive amino acids rather than peptides. Many compounds, including amino acids, amino acid derivatives, and dipeptides, cross-react in biuret assays. Our studies improve understanding of the specificity of endpoint and kinetic biuret assays widely used in clinical laboratories. Amino acids, urea, and creatinine contribute to overestimation of urinary peptide content by biuret assays.
Read full abstract