This study aims to quantify and compare the accuracy of traditional radiostereometric analysis (RSA), fluoroscopic RSA (fRSA), and optical tracking systems. Three phantoms were constructed, each having three stainless steel spheres and three reflective markers. One phantom was mounted to the base of a precision cross-slide table, one to the base of a precision rotation table, and the third was mounted to each moveable tabletop. Two dial-gauges, rigidly mounted to the cross-slide table and rotation table, quantified translations and rotations. Two fluoroscopy units placed orthogonally tracked the steel spheres while a four-camera optical motion capture system tracked the reflective markers in three-dimensional space. RSA was performed with both digital radiography and fluoroscopy. Three axes of translation were tested: parallel to one fluoroscopy image, parallel to the other fluoroscopy image, and at approximately 45° to each image. One axis of rotation was tested. Intraclass correlation coefficients indicated excellent agreement between the actual (dial-gauge) and measured translations for all modalities (ICCs>0.99) and excellent agreement between actual and measured rotations for RSA and fRSA (ICCs>0.99). Standard errors of measurement ranged from 0.032 mm and 0.121° for RSA, to 0.040 mm and 0.229° for fRSA, and to 0.109 mm and 0.613° for optical tracking. Differences between actual and measured translations along the 45° axis were significantly smaller than the two parallel axes. These findings suggest that under ideal conditions, accuracy of fRSA is comparable to traditional RSA, and superior to optical tracking. Accuracy is highest when measured at 45° to the fluoroscopy units.
Read full abstract