Abstract
A high-temperature stainless steel sphere was immersed into various salt solutions to investigate film boiling behavior at vapor film collapse. The film boiling behavior around the sphere was observed with a high-speed digital-video camera. Because the salt additives enhance the condensation heat transfer, the observed vapor film was thinner. The surface temperature of the sphere was measured. Salt additives increased the quenching (vapor film collapse) temperature because the frequency of direct contact between the sphere surface and the coolant increased. Quenching temperature increases with increased salt concentration. The quenching temperature, however, approaches a constant value when the salt concentration is close to its saturation concentration. The quenching temperature is well correlated with ion molar concentration, which is a number density of ions, regardless of the type of hydrated salts.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.