To investigate the characteristics and formation mechanism of ozone (O3) pollution in an industrial city, an extensive one-month field campaign focusing on O3 and its precursors (e.g., volatile organic compounds[VOC] and nitrogen oxides[NOx]) was conducted in Zibo City, a highly industrializd city in the North China Plain, in June 2021. The 0-D box model incorporating the latest explicit chemical mechanism (MCMv3.3.1) was applied using an observation dataset (e.g., VOC, NOx, HONO, and PAN) as model contraints to explore the optimal reduction strategy for O3 and its precursors. The results showed that ① during high-O3 episodes, stagnant weather conditions with high temperature and solar radiation as well as low relative humidity were observed, and oxygenated VOCs and alkenes from anthropogenic VOCs contributed the most to the total ozone formation potential and OH reactivity (k·OH). ② The in-situ O3 variation was primarily affected by local photochemical production and export process horizontal to downwind areas or vertical to the upper layer. The reduction in local emissions was essential to alleviate O3 pollution in this region. ③ During high-O3 episodes, high concentrations of ·OH (10×106 cm-3) and HO2· (14×108 cm-3) radical drove and generated a high O3 production rate (daytime peak value reached 36×10-9 h-1). The reaction pathways of HO2·+NO and ·OH+NO2 contributed the most to the in-situ gross Ox photochemical production (63%) and photochemical destruction (50%), respectively. ④ Compared to those during low-O3 episodes, the photochemical regimes during high-O3 episodes were more inclined to be considered as the NOx-limited regime. Detailed mechanism modeling based on multiple scenarios further suggested that the synergic emission reduction strategy of NOx and VOC, while focusing on NOx emission alleviation, would be practical options for controlling local O3 pollutions. This method could also provide policy-related guidance for the precise O3 pollution prevention and control in other industrialized Chinese cities.