While characterising potato (Solanum tuberosum, 2n=4x=48) clones with alien tomato (Lycopersicon esculentum) chromosome additions, a single addition for chromosome-10 of tomato was identified through restriction fragment length polymorphism (RFLP) analysis. This plant, 2101–1, was a BC2 derivative from a cross between a potato (+) tomato fusion hybrid backcrossed to potato. Cytological analysis of its somatic chromosomes through genomic in situ hybridisation (GISH) indicated the presence of four genomes of potato with two alien tomato chromosomes, of which one was much smaller than the other. Analysis of chromosome pairing at the pachytene and metaphase-I stages of microsporogenesis indicated that the large and small chromosomes were homologues. Thus, it was a disomic addition for chromosome-10 of tomato. The size difference was found to be due to a deletion. Fluorescent in situ hybridisation (FISH) experiments, using the telomeric repeat pAtT4 from Arabidopsis thaliana and the sub-telomeric repeat TGRI, showed intact telomeres and sub-telomeres for both alien chromosomes. Thus, the deletion that the smaller of the homologues suffered was interstitial and most probably occurred in the centromeric heterochromatic region of the long arm. The pattern of distribution of large and small chromosomes to telophase-II nuclei during microsporogenesis indicated that the deletion did not affect the meiotic behaviour of the smaller chromosome. In contrast, the frequencies of transmission of the large and the small chromosomes through the female parent, estimated in 96 BC3 progeny of plants by RFLP and GISH analyses, appeared to be very different, 69.2% and 3.8% respectively. This study also provides evidence that two different chromatids of a pair of homologues, rather than two chromatids of a single chromosome, are most likely to be involved in the origin of a disomic. The aberrant chromosome can be used for the physical mapping of chromosome-10.
Read full abstract