Our goals were: (i) to determine whether sublethal concentrations of water-borne ammonia would prevent the formation of a dominance hierarchy, or alter its structure, in groups of 4 juvenile trout; (ii) to investigate the behavioral and physiological responses of individuals of different social rank exposed to a concentration of ammonia that still allowed hierarchy formation. Social hierarchies were created by using a technique in which a food delivery system that created competition also served to isolate individual fish for respirometry. Groups of 4 fish were exposed to elevated ammonia (NH4HCO3) 12 h before first feeding; aggression was recorded by video camera during morning feedings. Experimental ammonia concentrations were 700, 1200 and 1500 μmol L−1 at pH 7.3, 12 °C (9.8, 16.8, and 21.0 mg L−1 as total ammonia-N, or 0.0515, 0.0884, and 0.1105 mg L−1 as NH3-N). Aggression was severely reduced by 1200 and abolished by 1500 μmol L−1 total ammonia, such that hierarchies did not form. However, groups exposed to 700 μmol L−1 total ammonia still formed stable hierarchies but displayed lower levels of aggression in comparison to control hierarchies. Exposure continued for 11 days. Physiological parameters were recorded on day 5 (end of period 1) and day 10 (end of period 2), while feeding and plasma cortisol were measured on day 11. In control hierarchies, dominant (rank 1) trout generally exhibited higher growth rates, greater increases in condition factor, higher food consumption, and lower cortisol levels than did fish of ranks 2, 3, and 4. In comparison to controls, the 700 μmol L−1 total ammonia hierarchies generally displayed lower growth, lower condition factor increases, lower O2 consumption, lower cortisol levels, but similar feeding patterns, with smaller physiological differences amongst ranks during period 1. Effects attenuated during period 2, as aggression and physiological measures returned towards control levels, indicating both behavioral and physiological acclimation to ammonia. These disturbances in social behavior and associated physiology occurred at an ammonia concentration in the range of regulatory significance and relevance to aquaculture.
Read full abstract