Membrane distillation (MD) is considered to be rather promising for high-salinity wastewater reclamation. However, its practical viability is seriously challenged by membrane wetting, fouling, and scaling issues arising from the complex components of hypersaline wastewater. It remains extremely difficult to overcome all three challenges at the same time. Herein, a nanocomposite hydrogel engineered Janus membrane has been facilely constructed for desired wetting/fouling/scaling-free properties, where a cellulose nanocrystal (CNC) composite hydrogel layer is formed in situ atop a microporous hydrophobic polytetrafluoroethylene (PTFE) substrate intermediated by an adhesive layer. By the synergies of the elevated membrane liquid entry pressure, inhibited surfactant diffusion, and highly hydratable surface imparted by the hydrogel/CNC (HC) layer, the resultant HC-PTFE membrane exhibits robust resistance to surfactant-induced wetting and oil fouling during 120 h of MD operation. Meanwhile, owing to the dense and hydroxyl-abundant surface, it is capable of mitigating gypsum scaling and scaling-induced wetting, resulting in a high normalized flux and low distillate conductivity at a concentration factor of 5.2. Importantly, the HC-PTFE membrane enables direct desalination of real hypersaline wastewater containing broad-spectrum foulants with stable vapor flux and robust salt rejection (99.90%) during long-term operation, demonstrating its great potential for wastewater management in industrial scenarios.