Abstract

Taking abundant and sustainable solar energy as the only energy source, solar-powered interface evaporation has been regarded as a promising method to alleviate the pressure of freshwater shortage. However, the uptake of clean water from brine is constantly accompanied by evaporation of water and condensation of vapor, which inevitably generates salt solid, preventing further continuous and stable evaporation. The most direct method is to fabricate a photothermal material with salt self-resistance by using the reflux of salt ions. Here, a superhydrophilic interconnected biomass carbon absorber (SBCA) is prepared by freeze-drying and carbonization, realizing strong liquid pumping, and self-blocking salt. In combination with superior broadband light absorption (94.91%), high porosity (95.9%), superhydrophilicity, and excellent thermal localization, an evaporation device with excellent evaporation rate (2.45kg m-2 h-1 under 1kW m-2) is successfully proposed. In the meantime, the porous skeleton and rapid water transport can enhance the diffusion of salt ions and slow down the rate of salt deposition. As a result, no salt deposition is found on the SBCA surface after continuous irradiation at 1kW m-2 for 15 h. The design can provide a convenient and low-cost efficient strategy for solar steam generators to address clean water acquisition.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call