Guanine-nucleotide-binding protein beta and gamma subunits belong to large protein families encompassing at least five and ten members, respectively, from mammalian cells. The formation of stable beta gamma heterodimers is a selective process determined by the primary sequences of both the beta and gamma subunit. For example, gamma 2 dimerizes with both beta 1 and beta 2, gamma 1 with beta 1, but not with beta 2. To identify the structural elements of gamma subunits relevant to the selectivity of beta gamma dimerization, we have used the baculovirus-insect cell-expression system to produce chimeric beta and gamma subunits and have studied their dimerization using an assay based on the ability of isoprenylation-resistant gamma subunit mutants to draw beta subunits into the cytosol and including sucrose density gradient analysis of soluble recombinant beta gamma dimers. The results show that replacement of three consecutive residues of gamma 1, Cys36-Cys37-Glu38, by the corresponding residues of gamma 2, Ala33-Ala34-Ala35, suffices to render the mutant gamma 1 subunit capable of forming heterodimers with beta 2. The ability of mutant gamma 1 subunits to dimerize with beta 2 does not correlate with the probability of the mutated region to participate in coiled-coil structures. The tripeptide region identified here as a critical determinant of the selectivity of beta gamma dimer formation is distinct from, but partially overlaps with, the region reported by Lee et al. [Lee, C., Murakami, T. & Simonds, W. F. (1995) J. Biol. Chem. 270, 8779-8784]. The results of this study, therefore, not only extend the region of gamma 1 selecting between beta 1 and beta 2 to the five-residue sequence between Cys36 and Phe40, but also argue against the notion that the hydrophobic terminal residue of this motif represents the key determinant of selective beta gamma interaction.
Read full abstract