In this paper, we present a parameter-free particle relaxation technique to improve the accuracy and stability of smoothed particle hydrodynamics (SPH). Instead of imposing a background pressure, particles are regularized following the criteria of 0th-order consistency, i.e., the gradient of a constant to be zero. Specifically, the modifications of particles' position are solved by a gradient decent method according to the error between zero value and the gradient of a constant. This modification decreases the integration error and leads a more uniform particles distribution. A set of challenging benchmarks including lid-driven cavity flow, Taylor-Green vortex, FSI (fluid-solid interaction) problem, 2D (two-dimensional) dam-break case, and water exit of a cylinder are investigated to validate the effectiveness of the present technique for addressing the well-known tensile instability and particle clumping problems. Finally, the study of 3D (three-dimensional) dam-break against an obstacle demonstrates the stability and versatility of the present method.