ConspectusLithium-ion batteries (LIBs) have achieved great success and dominated the market of portable electronics and electric vehicles owing to their high energy density and long-term cyclability. However, if applying LIBs for large-scale energy storage scenarios, such as regulating the output of electricity generated by sustainable energy in the future age of carbon neutrality, the current electrochemistry of LIBs based on Li-ion interaction/deinteraction between a transition-metal oxide cathode and graphite anode will suffer from problems of scarce natural resources (e.g., Li, Co, and Ni) and high energy consumption/CO2 emission involved in the production of electrodes. Similarly, other commercial batteries such as lead-acid batteries and nickel-metal hydride batteries are also plagued by these issues.In contrast, organic electrode materials, especially carbonyl materials, exhibit advantages of abundant resources, renewability, high capacity, environmental friendliness, and structural designability and have shown great promise for various rechargeable batteries in recent years. However, organic carbonyl electrode materials generally exhibit unsatisfactory cycling stability and rate performance, which are highly dependent on the electrolyte and interfacial chemistry. Appropriate electrolytes and a stable electrode/electrolyte interface would be beneficial for preventing the dissolution of organic carbonyl electrode materials and/or their redox intermediates in electrolytes and promoting fast ion transport between the electrode and electrolyte. In this regard, designing an appropriate electrolyte and constructing a stable electrode/electrolyte interface are the keys to enhancing the comprehensive performance of organic carbonyl electrode materials.In this Account, on the basis of our progress and related works from other groups in the past decade, we afford an overview of understanding the effects of electrolyte and interfacial chemistry on the electrochemical performance of organic carbonyl electrode materials. We will start by briefly introducing the basic properties, working mechanisms, and issues of organic carbonyl electrode materials. Then, the implications of electrolyte and electrode/electrolyte interfacial chemistry on electrochemical performance will be summarized and highlighted through discussing the performance of organic carbonyl electrodes in different types of electrolytes (organic liquid and aqueous and solid-state electrolytes). Meanwhile, the design principles of electrolytes and interfacial chemistry for organic carbonyl electrodes are also discussed. A representative example is that organic carbonyl electrode materials often exhibit better electrochemical performance in ether-based electrolytes than in ester-based electrolytes, which could be mainly attributed to the stable and robust solid electrolyte interphase (SEI) formed on carbonyl electrodes in the ether-based electrolyte. This example demonstrates the importance of investigating the electrode/electrolyte interfacial chemistry of organic carbonyl electrode materials. Finally, future perspectives on designing appropriate electrolytes and understanding electrode/electrolyte interfacial chemistry will also be discussed. It is meaningful to thoroughly reveal the dynamic evolution of the electrode/electrolyte interface during discharge/charge processes and evaluate the compatibility between electrolytes and organic carbonyl electrode materials under practical conditions using limited quantities of electrolytes and high areal-specific-capacity electrodes in the future. This Account could attract more attention to electrolytes and the electrode/electrolyte interfacial chemistry of organic carbonyl electrode materials and finally promote their future commercial applications.
Read full abstract