Abstract

The challenge of improving low-temperature performance in lithium-ion batteries (LIBs) is attributed to the formation of an unstable solid electrolyte interphase (SEI) film. Lithium difluoro(oxalate)borate (LiODFB) has demonstrated potential in enhancing capacity retention and reducing impedance at low temperatures by establishing a high ion conductivity and stable SEI layer. Previous research indicates that the BOF2− anion, a soluble product of film formation additive of LiODFB hinder salt decomposition by aggregating on the electrode surface. This study presents a strategy to intensify the film formation process of LiODFB additives by introducing an optimal standing time during intermittent discharge processes. Three specific stages of soluble product diffusion are discussed. Diffusion starts from the outer layer of adsorption composed of soluble substances, gradually extends to the inner layer of adsorption, and finally establishes a new connection with the electrode. A brief standing time proves insufficient for inner adsorption layer diffusion, while excessively extended standing time fails to accelerate LiODFB decomposition. A standing time of 2300 s is selected to promote a stable SEI layer. This strategy elevates the capacity retention rate of cells at –20 °C from 66.59 % to 84.44 %. The study offers a method to address battery performance degradation in low-temperature conditions.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.