Amorphous solid dispersions (ASDs) have been extensively utilized to improve the bioavailability of drugs that have low aqueous solubility. The influence of different excipients on the conversion of amorphous drugs into their crystalline forms in ASDs has been extensively researched. However, there is limited knowledge examining the impact of film coating materials on the physical stability of oral tablet formulations containing ASDs. In this study, we demonstrate that plasticizers present in film coats can have a detrimental impact on the physical stability of ASDs. We systematically compared two frequently used plasticizers in film coats: triacetin and polyethylene glycol 3350 (PEG 3350). To gain mechanistic insights into the detrimental effects of plasticizers on the physical stability of ASDs, plasticizer leaching studies and physical stability studies of solvent-evaporated and spray-dried intermediates (SDI) using two BCS class II drugs were conducted. Triacetin was found to leach into the tablet core within one week when stressed at 40°C/75% RH, whereas no leaching was observed for PEG 3350, as discerned from spectroscopic studies. We also found that triacetin-containing ASDs exhibited greater amorphous to crystalline form conversion of the drug compared to PEG 3350-containing ASDs after stability testing. Moreover, the incorporation of triacetin into polymers was found to cause a significant depression of glass transition temperature and upon equilibration with moisture, a drop below room temperature. Overall, these observations underscore the importance of carefully selecting plasticizers to be present in film coatings when developing ASD pharmaceutical products.
Read full abstract