Abstract

Amorphous solid dispersion (ASD) is one of the most important strategies to improve the solubility and dissolution rate of poorly water-soluble drugs. As a widely used technique to prepare ASDs, hot-melt extrusion (HME) provides various benefits, including a solvent-free process, continuous manufacturing, and efficient mixing compared to solvent-based methods, such as spray drying. Energy input, consisting of thermal and specific mechanical energy, should be carefully controlled during the HME process to prevent chemical degradation and residual crystallinity. However, a conventional ASD development process uses a trial-and-error approach, which is laborious and time-consuming. In this study, we have successfully built multiple machine learning (ML) models to predict the amorphization of crystalline drug formulations and the chemical stability of subsequent ASDs prepared by the HME process. We utilized 760 formulations containing 49 active pharmaceutical ingredients (APIs) and multiple types of excipients. By evaluating the built ML models, we found that ECFP-LightGBM was the best model to predict amorphization with an accuracy of 92.8%. Furthermore, ECFP-XGBoost was the best in estimating chemical stability with an accuracy of 96.0%. In addition, the feature importance analyses based on SHapley Additive exPlanations (SHAP) and information gain (IG) revealed that several processing parameters and material attributes (i.e., drug loading, polymer ratio, drug's Extended-connectivity fingerprints (ECFP) fingerprints, and polymer's properties) are critical for achieving accurate predictions for the selected models. Moreover, important API's substructures related to amorphization and chemical stability were determined, and the results are largely consistent with the literature. In conclusion, we established the ML models to predict formation of chemically stable ASDs and identify the critical attributes during HME processing. Importantly, the developed ML methodology has the potential to facilitate the product development of ASDs manufactured by HME with a much reduced human workload.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.