Abstract

Intermolecular interactions between active pharmaceutical ingredients (APIs) and carrier polymers are important for the long-term physical stability of amorphous solid dispersions (ASDs). However, the negative impact of intermolecular interactions on chemical stability has rarely been reported. In this study, the relationship between intermolecular interactions and physical and chemical stability was investigated using two ASDs composed of API and hydroxypropyl methylcellulose acetate succinate (HPMCAS) with different stabilities: ASD1 was physically stable but chemically unstable, whereas ASD2 was physically unstable but chemically stable. Ionic-bonding between the pyridine nitrogen in the API and succinyl group in HPMCAS was found in both ASDs. The additional interaction between the succinyl group in HPMCAS and the hydroxyl group in the API was suggested only in ASD1. It was concluded that the additional interaction contributed to the physical stability of ASD1; however, it accelerated the chemical reaction between the succinyl and hydroxyl groups to generate succinyl ester owing to its close proximity. This study shows that the intermolecular interaction between the API and carrier polymer is not always beneficial for chemical stability. Understanding the molecular states of APIs and polymers in ASDs is important for their successful development.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call