Abstract

Amorphous solid dispersions (ASDs) are one of the frontier strategies to improve solubility and dissolution rate of poorly soluble drugs and hence tackling the growing challenges in oral bioavailability. Pharmaceutical performance, physicochemical stability, and downstream processability of ASD largely rely on the physical structure of the product. This necessitates in-depth characterization of ASD microstructure. Solid-state nuclear magnetic resonance (SS-NMR) techniques bear the ultimate analytical capabilities to provide the molecular level information on the dynamics and phase compositions of amorphous dispersions. SS-NMR spectroscopy/relaxometry, as a single and nondestructive technique, can reveal diverse and critical structural information of complex ASD formulations that are barely amenable from any other existing technique. The purpose of the current article is to review the recent most important studies on various sophisticated and information-rich one-dimensional and two-dimensional SS-NMR spectroscopy/relaxometry for the analysis of molecular mobility, miscibility, drug-carrier interactions, crystallinity, and crystallization in ASD. Some specific examples on microstructural elucidations of challenging ASD using multidimensional and multinuclear SS-NMR are presented. Additionally, some relevant examples on the utility of solution-NMR and NMR-imaging techniques for the investigation of the dissolution behavior of ASD are gathered.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call