The presence of heavy metals often causes significant health risks, particularly cadmium, which is known for its high toxicity. In this study, a glassy carbon electrode was successfully modified by incorporating ZnO-PVA-Graphene nanocomposite, leveraging the excellent electrical properties and electron mobility of the material. Comprehensive material analysis, including XRD, confirmed that ZnO maintained its hexagonal wurtzite crystal structure despite the addition of graphene. Moreover, FESEM analysis showed that increasing graphene concentration led to a reduction in ZnO particle size by 85, 68, and 52 nm, respectively, accompanied by a decrease in band gap energy, as verified by UV–Vis measurements. Photoluminescence tests were also conducted and the result showed a noticeable blue shift in ZnO-PVA-Graphene nanocomposites compared to ZnO-PVA, specifically in the near band-edge (NBE) UV emission within the 374–379 nm wavelength range. Through I–V characterization, the optimal graphene concentration for cadmium detection was identified as 1.5 wt% in ZnO-PVA-Graphene nanocomposites, showing an approximate ohmic response. Meanwhile, square-wave voltammetry analysis of cadmium concentrations ranging from 0 to 80 ppm produced a coefficient of determination of 0.98926 and a Limit of Detection (LOD) of 9.88 ppm. These results showed the significant potential of ZnO-PVA-Graphene nanocomposites as a promising material for further development as an effective electrode modifier, enhancing the sensitivity of detection systems.
Read full abstract