We studied surface morphology induced changes of magnetic anisotropy, magnetization reversal, and symmetry of the anisotropic magnetoresistance (AMR) in ion sputtered Ni films grown on MgO (001). Grazing-incidence ion sputtering generally develops anisotropic surface roughness of the Ni films, i.e., nanometer wide ripples parallel to the ion beam direction, giving rise to uniaxial magnetic anisotropy with the easy axis along the ion beam direction. The formed ripples act as domain wall nucleation and pinning sites during magnetization reversal, while two-jump domain wall motion dominates in the as-grown Ni films. More importantly, the azimuthal angular dependence of the AMR indicates a superposition of twofold symmetry and fourfold symmetry. By relying on grazing-incidence ion sputtering along specific crystallographic directions, we are able to tailor the relative weight of twofold and fourfold symmetry of AMR. We demonstrate that in contrast to the bulk case, the symmetry of the AMR becomes also sensitive to the surface morphology in thin films, which is in particular relevant for the design of magnetotransport based sensors.
Read full abstract