Cost-efficient multi-material design requires suitable joining techniques, ideally with low investment cost by re-using existing assembling lines. The recently developed resistance rivet spot welding (RRSW) technique combines mechanical joining with spot welding and enables cost-efficient joining of aluminum (Al) to steel for multi-material body-in-white structures. Here, the static and fatigue strengths of different hybrid Al-steel specimens made by RRSW were measured and compared to other state-of-the-art joining techniques, such as self-piercing riveting (SPR) and RSW. The static strength of RRSW matched or exceeded that of SPR regardless of the sheet thickness, whereas the fatigue strength of the RRSW joints showed a strong dependency on the thickness of the steel sheets. For thinner steel sheets, the fatigue of the RRSW-joined metal sheets was lower in comparison with SPR. Fatigue cracks were initiated in thin steel sheets around the weld nugget. By contrast, for thicker steel sheets, the fatigue strength of RRSW matched or exceeded that of SPR. With a thicker material combination of 1.5 mm steel and 1.0 mm Al, fatigue cracks occurred only in the Al sheet in both SPR and RRSW. For suitable steel sheet thickness, RRSW is thus a durable technique to join steel and Al.
Read full abstract