First-principles density functional theory (DFT) is used to analyze the stability of Pb intercalated phases under buffer layer graphene on SiC(0001) as a function of the supercell size, Pb coverage, and degree of Pb ordering. By comparing the chemical potentials of such two-dimensional Pb structures, we find that there is a family of structurally distinct thermodynamically preferred Pb subsurface configurations with minute stability differences. These differences are comparable to the thermal energies at about 450 °C, where the Pb intercalated phases are grown. High-resolution surface-diffraction experiments using Spot Profile Analysis Low-Energy Electron Diffraction (SPA-LEED) confirm this high degree of degeneracy of the Pb intercalated phases from broad, low-intensity moiré spots observed exclusively from intercalated Pb. The low intensity of the moiré spots implies the coexistence of structurally different subsurface Pb phases.
Read full abstract