Assessing potential stroke treatments in the presence of risk factors can improve screening of treatments prior to clinical trials and is important in testing the efficacy of treatments in different patient populations. Here, we test our noninvasive, nonpharmacological sensory stimulation treatment in the presence of the main risk factor for ischemic stroke, hypertension. Utilizing functional imaging, blood flow imaging, and histology, we assessed spontaneously hypertensive rats (SHRs) pre- and post-permanent middle cerebral artery occlusion (pMCAO). Experimental groups included a treatment SHR group (sensory-stimulated group), control untreated SHR group (no sensory stimulation), and a treated (sensory-stimulated) Wistar-Kyoto normotensive group. Unlike our previous studies, which showed sensory-based complete protection from impending ischemic cortical stroke damage in rats as seen in the treated Wistar-Kyoto group, we found that SHRs at 24hr post-pMCAO lacked evoked cortical activation, had a significant reduction in blood flow within the MCA, and sustained very large infarcts regardless of whether they received stimulation treatment. If translatable, this work highlights a potential need for a combined treatment plan when delivering sensory stimulation treatment in this patient population.