Objective: To investigate the therapeutic effect of sodium oligomannate on experimental autoimmune encephalomyelitis (EAE) mice and its effect on intestinal flora and microglia polarization. Methods: Fifty female C57BL/6 mice were randomly divided by the random number table method into the control group, EAE model group and low-dose, medium-dose and high-dose group of sodium oligomannate with 10 mice each. The EAE model group and each dose group of sodium oligomannate were induced by subcutaneous multi-point injection of MOG35-55 peptide for the EAE model. Mice in the low-dose, medium-dose and high-dose group of sodium oligomannate were gavaged sodium oligomannate 40, 80, and 160 mg/kg twice a day, respectively, starting from the day after modeling. The intervention continued until the mice were euthanized. Observe the incidence of disease, infiltration of inflammatory cells in spinal cord tissue, and demyelination in each group of mice.. The mice feces were collected and tested for intestinal flora by 16S rRNA sequencing. Immunofluorescence staining was used to observe the expression of Iba-1 protein, an activation indicator of microglia, in spinal cord tissue. The protein levels of M1 type markers iNOS, CD16, and M2 type markers Arg1 and CD206 were tsested in the spinal cord by Western blotting and immunofluorescence staining. Results: None of the mice in the control group developed any disease, while the mice in other groups showed varying degrees of disease, including tail sag, unstable walking, and hind limb weakness. Compared with the EAE model group, the incubation period was prolonged, the peak was delayed and the peak neurological dysfunction score was reduced (3.6±0.6 vs 3.0±0.6, 2.8±0.5, 1.8±0.6, P<0.05) in all sodium oligomannate groups, with milder symptoms at higher doses. The differences in pairwise comparisons between the groups were all statistically significant (all P<0.05). In the control group, no inflammatory cell infiltration or demyelinating changes were observed in spinal cord tissue. In the EAE model group, inflammatory cell infiltration and demyelination changes were evident in the spinal cord tissues at the onset peak. Compared with the EAE model group, inflammatory cell infiltration and demyelination were ameliorated in all sodium oligomannate groups. Compared with the control group, the relative abundance of Bacteroidota decreased and that of Firmicutes increased in the EAE model group. Compared with the EAE model group, the relative abundance of Bacteroidota increased and that of Firmicutes decreased, the ratio of Bacteroidetes to Firmicutes increased (0.20±0.05 vs 0.37±0.02,0.61±0.03,0.91±0.08,P<0.01) in the respective dose groups. The difference in pairwise comparison between groups was statistically significant (P<0.01), with greater changes at higher doses. Compared with the control group, the levels of Iba-1、CD16 and iNOS increased, while the levels of Arg-1 and CD206 decreased in the EAE model group. Compared with the EAE model group, the levels of Iba-1、CD16 and iNOS decreased, while the levels of Arg-1 and CD206 increased in all sodium oligomannate groups(P<0.01), with greater changes at higher doses. The difference between groups was statistically significant (P<0.01). Conclusions: Sodium oligomannate has a therapeutic effect on EAE and is dose-dependent. Its mechanism of action may be related toimproving intestinal microecology and the modulation of microglial polarization.
Read full abstract